Reactions at noble metal contacts with methylammonium lead triiodide perovskites: Role of underpotential deposition and electrochemistry

APL MATERIALS(2019)

引用 73|浏览25
暂无评分
摘要
Chemical reactivity of halide perovskites coupled with a low energy of formation makes it a challenge to characterize material properties and achieve long-term device stability. In this study, we elucidate electrochemical reactions occurring at the methylammonium lead triiodide (MAPbI(3))/Au interface. X-ray photoemission spectroscopy is used to identify a type of reduction/oxidation reaction termed underpotential deposition (UPD) involving lead, iodine, and hydrogen occurring at interfaces with noble metals. Changes in surface compositions and oxidation states suggest that UPD derived adsorbates at MAPbI(3)/Au interfaces lower the energy barrier for release of volatile HI and/or I-2 catalyzing degradation at exposed contacts. Additionally, comparison to PbI2/Au interfaces demonstrates that the presence of methylammonium/methylamine accelerates the formation of a Pb-0 adlayer on the Au. Reactions involving UPD Pb-0 can transform the typically anodic (hole collecting) Au to a cathode in a photovoltaic measurement. Cyclic voltammetry reveals electrochemical reaction peaks in indium tin oxide (ITO)/MAPbI(3)/Au devices occurring within voltage ranges commonly used for perovskite characterization. The electrochemical stability window of this device architecture is measured to be between -0.5 V and 0.9 V. Voltage induced interfacial reactions contribute to reversible electrochemical peaks, hysteresis, switchable perovskite diode polarity, and permanent degradation at larger voltages. These types of surface reactions alter the interface/interphase composition beyond ion accumulation, provide a source for the diffusion of defects, and contribute to electrode material dependent current-voltage hysteresis. Moreover, the results imply fundamental limitations to achieving high device stability with noble metals and/or methylammonium containing perovskites. (C) 2019 Author(s).
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要