Data assimilation of in-situ and satellite remote sensing data to 3D hydrodynamic lake models

Geoscientific Model Development Discussions(2019)

引用 2|浏览10
暂无评分
摘要
Abstract. The understanding of lakes physical dynamics is crucial to provide scientifically credible information for ecosystem management. We show how the combination of in-situ data, remote sensing observations and three-dimensional hydrodynamic numerical simulations is capable of delivering various spatio-temporal scales involved in lakes dynamics. This combination is achieved through data assimilation (DA) and uncertainty quantification. In this study, we present a flexible framework for DA into lakes three-dimensional hydrodynamic models. Using an Ensemble Kalman Filter, our approach accounts for model and observational uncertainties. We demonstrate the framework by assimilating in-situ and satellite remote sensing temperature data into a three-dimensional hydrodynamic model of Lake Geneva. Results show that DA effectively improves model performance over a broad range of spatio-temporal scales and physical processes. Overall, temperature errors have been reduced by 54 %. With a localization scheme, an ensemble size of 20 members is found to be sufficient to derive covariance matrices leading to satisfactory results. The entire framework has been developed for the constraints of operational systems and near real-time operations (e.g. integration into http://meteolakes.ch).
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要