Splicing and neurodegeneration: Insights and mechanisms

WILEY INTERDISCIPLINARY REVIEWS-RNA(2019)

引用 28|浏览6
暂无评分
摘要
Splicing is the global cellular process whereby intervening sequences (introns) in precursor messenger RNA (pre-mRNA) are removed and expressed regions (exons) are ligated together, resulting in a mature mRNA transcript that is exported and translated in the cytoplasm. The tightly regulated splicing cycle is also flexible allowing for the inclusion or exclusion of some sequences depending on the specific cellular context. Alternative splicing allows for the generation of many transcripts from a single gene, thereby expanding the proteome. Although all cells require the function of the spliceosome, neurons are highly sensitive to splicing perturbations with numerous neurological diseases linked to splicing defects. The sensitivity of neurons to splicing alterations is largely due to the complex neuronal cell types and functions in the nervous system that require specific splice isoforms to maintain cellular homeostasis. In the past several years, the relationship between RNA splicing and the nervous system has been the source of significant investigation. Here, we review the current knowledge on RNA splicing in neurobiology and discuss its potential role and impact in neurodegenerative diseases. We will examine the impact of alternative splicing and the role of splicing regulatory proteins on neurodegeneration, highlighting novel animal models including mouse and zebrafish. We will also examine emerging technologies and therapeutic interventions that aim to "drug" the spliceosome. This article is categorized under: RNA in Disease and Development > RNA in Disease RNA Processing > Splicing Regulation/Alternative Splicing RNA in Disease and Development > RNA in Development
更多
查看译文
关键词
neurodegeneration,R-loops,splicing,therapuetics
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要