3D spatially-resolved geometrical and functional models of human liver tissue reveal new aspects of NAFLD progression

bioRxiv(2019)

引用 1|浏览34
暂无评分
摘要
Early disease diagnosis is key for the effective treatment of diseases. It relies on the identification of biomarkers and morphological inspection of organs and tissues. Histopathological analysis of human biopsies is the gold standard to diagnose tissue alterations. However, this approach has low resolution and overlooks 3D structural changes that are consequence of functional alterations. Here, we applied multiphoton imaging, 3D digital reconstructions and computational simulations to generate spatially-resolved geometrical and functional models of human liver tissue at different stages of non-alcoholic fatty liver disease (NAFLD). We identified a set of new morphometric cellular parameters correlated with disease progression. Moreover, we found profound topological defects in the 3D bile canaliculi (BC) network. Personalized biliary fluid dynamic simulations predicted an increased pericentral biliary pressure and zonated cholestasis, consistent with elevated cholestatic biomarkers in patients9 sera. Our spatially-resolved models of human liver tissue can contribute to high-definition medicine by identifying quantitative multi-parametric cellular and tissue signatures to define disease progression and provide new insights into NAFLD pathophysiology.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要