A role for liquid-liquid phase separation in ESCRT-mediated nuclear envelope reformation.

bioRxiv(2019)

引用 3|浏览22
暂无评分
摘要
At mitotic exit, microtubule arrays are dismantled in concert with the reformation of the nuclear envelope. We show how the inner nuclear membrane protein, LEM2, exploits liquid-liquid phase separation to direct microtubule remodeling and nuclear envelope sealing via the Endosomal Sorting Complexes Required for Transport (ESCRT) pathway. LEM2 tethers membrane to chromatin disks through direct binding between its LEM motif and the chromatin-associated barrier-to-autointegration factor (BAF). Concurrently, a low-complexity domain within LEM2 undergoes liquid-liquid phase separation to coat spindle microtubule bundles. Spatially restricted, LEM2s winged helix (WH) domain activates the ESCRT-II/ESCRT-III hybrid protein, CHMP7. Together LEM2 and CHMP7 copolymerize around microtubule bundles to form a molecular O-ring that promotes nuclear compartmentalization and initiates downstream ESCRT factor recruitment. These results demonstrate how multivalent interactions of a transmembrane protein, including those that mediate phase separation, coordinate localized ESCRT polymerization, mitotic spindle disassembly, and membrane fusion. Defects in this pathway compromise spindle disassembly, nuclear integrity, and genome stability.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要