Pervasive head-to-tail insertions of DNA templates mask desired CRISPR/Cas9-mediated genome editing events

bioRxiv(2019)

引用 47|浏览46
暂无评分
摘要
Abstract CRISPR/Cas9 mediated homology-directed DNA repair is the method of choice for precise gene editing in a wide range of model organisms, including mouse and human. Broad use by the biomedical community refined the method, making it more efficient and sequence specific. Nevertheless, the rapidly evolving technique still contains pitfalls. During the generation of six different conditional knock-out mouse models, we discovered that frequently (sometimes solely) homology-directed repair and/or non-homologous end-joining mechanisms caused multiple unwanted head-to-tail insertions of donor DNA templates. Disturbingly, conventionally applied PCR analysis—in most cases—failed to identify such multiple integration events, which led to a high rate of falsely claimed precisely edited alleles. We caution that comprehensive analysis of modified alleles is essential, and offer practical solutions to correctly identify precisely edited chromosomes.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要