Atomic-Resolution Visualization And Doping Effects Of Complex Structures In Intercalated Bilayer Graphene

PHYSICAL REVIEW MATERIALS(2019)

引用 10|浏览33
暂无评分
摘要
Molecules intercalating two-dimensional materials form complex structures that have been characterized primarily by spatially averaged techniques. Here we use aberration-corrected scanning transmission electron microscopy and density-functional-theory (DFT) calculations to study the atomic structure of bilayer graphene (BLG) and few-layer graphene (FLG) intercalated with FeCl3. In BLG, we discover two distinct intercalated structures that we identify as monolayer FeCl3 and monolayer FeCl2. The two structures are separated by atomically sharp boundaries and induce large free-carrier densities on the order of 10(13) cm(-2) in the graphene layers. In FLG, we observe multiple FeCl3 layers stacked in a variety of possible configurations with respect to one another. Finally, we find that the microscope's electron beam can convert the FeCl3 monolayer into FeOCl monolayers in a rectangular lattice. These results reveal the need for a combination of atomically resolved microscopy, spectroscopy, and DFT calculations to identify intercalated structures and study their properties.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要