Single-Loop and Composite-Loop Realization of Nonadiabatic Holonomic Quantum Gates in a Decoherence-Free Subspace

arXiv: Quantum Physics(2019)

引用 68|浏览18
暂无评分
摘要
High-fidelity quantum gates are essential for large-scale quantum computation, which can naturally be realized in a noise-resilient way. Geometric manipulation and decoherence-free subspace encoding are promising ways toward robust quantum computation. Here, by combining the advantages of both strategies, we propose and experimentally realize universal holonomic quantum gates in both a single-loop scheme and a composite scheme, based on nonadiabatic and non-Abelian geometric phases, in a decoherence-free subspace with nuclear magnetic resonance. Our experiment uses only two-body resonant spin-spin interactions and thus is experimental friendly. In particular, we also experimentally verify that the composite scheme is more robust against the pulse errors than the single-loop scheme. Therefore, our experiment provides a promising way toward faithful and robust geometric quantum manipulation.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要