Osmotic stress at membrane level and photosystem II activity in two C4 plants after growth in elevated CO2 and temperature

ANNALS OF APPLIED BIOLOGY(2019)

引用 6|浏览21
暂无评分
摘要
In the last two decades, several studies have evaluated plant physiology, growth and survival under forecasted climate changes and the effects of these environmental factors in plants are started to be understood. However, there are few studies evaluating such effects at the tissue or cellular level, especially for plants with photosynthetic C4 metabolism that are believed to respond less to elevated CO2 concentration. For this reason, we tested maize and pearl millet plants to consider cellular physiological responses to induce osmotic stress and acute heat shock. Plants were grown under elevated CO2 concentration and temperature, simulating global climate changes and then were subjected to osmotic stress and acute heat shock in vitro. The results indicated that the growth under elevated CO2 and temperature improved cellular tolerance to osmotic stress and acute heat shock for both species, but maize seemed to benefit more from increased CO2 concentration whereas pearl millet seemed to benefit more from increased temperature. Taken together, the results indicated that the current and expected global climate changes, besides operating differentially in these two species, can similarly affect other C4 plant species in different ecosystems whether undisturbed or managed.
更多
查看译文
关键词
cell tolerance,electrolyte leakage,membrane stability,thermotolerance
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要