Nonlinear Diffusion Acceleration of the Least-Squares Transport Equation in Geometries with Voids

NUCLEAR SCIENCE AND ENGINEERING(2019)

引用 2|浏览2
暂无评分
摘要
In this paper we show the extension of nonlinear diffusion acceleration (NDA) to geometries containing small voids using a weighted-least-squares (WLS) high-order equation. Even though the WLS equation is well defined in voids, the low-order drift-diffusion equation was not defined in materials with a zero cross section. This paper derives the necessary modifications to the NDA algorithm. We show that a small change to the NDA closure term and a nonlocal definition of the diffusion coefficient solve the problems for void regions. These changes do not affect the algorithm for optically thick material regions while making the algorithm well defined in optically thin ones. We use a Fourier analysis to perform an iterative analysis to confirm that the modifications result in a stable and efficient algorithm. Later in the paper, numerical results of our method are presented. We test this formulation with a small, one-dimensional test problem. Additionally, we present results for a modified version of the C5G7 benchmark containing voids as a more complex, reactor-like problem. We compared our results to Texas A&M's transport code PDT, utilizing a first-order discontinuous formulation as reference and the self-adjoint angular flux equation with void treatment (SAAF tau), a different second-order form. The results indicate that the NDA WLS performed comparably or slightly worse then the asymmetric SAAF tau while maintaining a symmetric discretization matrix.
更多
查看译文
关键词
Neutron transport,weighted least squares,nonlinear diffusion acceleration,voids,Fourier analysis
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要