Defect-free assembly of 2D clusters of more than 100 single-atom quantum systems

PHYSICAL REVIEW LETTERS(2019)

引用 140|浏览17
暂无评分
摘要
We demonstrate the defect-free assembly of versatile target patterns of up 111 neutral atoms, building on a 361-site subset of a micro-optical architecture that readily provides thousands of sites for single-atom quantum systems. By performing multiple assembly cycles in rapid succession, we drastically increase achievable structure sizes and success probabilities. We implement repeated target pattern reconstruction after atom loss and deterministic transport of partial atom clusters necessary for distributing entanglement in large-scale systems. This technique will propel assembled-atom architectures beyond the threshold of quantum advantage and into a regime with abundant applications in quantum sensing and metrology, Rydberg-state mediated quantum simulation, and error-corrected quantum computation.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要