Bead-type polystyrene/nano-CaCO3 (PS/nCaCO3) composite: a high-performance adsorbent for the removal of interleukin-6

Journal of Materials Chemistry B(2019)

引用 10|浏览15
暂无评分
摘要
A novel nano-CaCO3 (nCaCO3) particle composite-derived polystyrene (PS) resin was successfully synthesized by a suspension polymerization method. The nCaCO3 reinforced PS material (PS/nCaCO3) possessed a structure with abundant mesopores of high porosity, high specific surface area (828.3 m2 g−1) and large pore volume (1.83 cm3 g−1). It was revealed that the incorporation of nCaCO3 into the PS matrix enhanced both the mechanical strength which can prevent the fragmentation and its adsorption capacity for interleukin-6 (IL-6, MW = 24.0 kDa) from human plasma. The adsorption isotherm could be described by the Langmuir model and classified as S-3 type, showing an IL-6 uptake of up to 25.6 ng g−1 at an equilibrium concentration of about 500 ng L−1. The adsorption capacity for IL-6 of PS/nCaCO3 is not only significantly higher than that of PS (without nCaCO3), but also superior to those of currently available adsorbents that are under clinical studies (e.g., CytoSorb™ towards cytokines). In addition, the PS/nCaCO3 adsorbent also had good hemocompatibility and showed no leakage of nCaCO3 in the plasma in a flowing model system. Therefore, the synthesized PS/nCaCO3 nano-composite has a great potential to be used as an efficient adsorbent for the removal of interleukin-6 (IL-6) from blood of inflammatory and auto-immune disease patients through hemoperfusion.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要