Enhanced upconversion via plasmonic near-field effects: role of the particle shape

JOURNAL OF OPTICS(2019)

引用 7|浏览10
暂无评分
摘要
The large energy-density enhancements, associated with the near-field of plasmonic metal nanoparticles (MNPs), can potentially be utilized to increase the efficiency of nonlinear processes such as upconversion (UC). A drawback of employing metallic structures for UC applications is luminescence quenching, i.e. the transfer of energy from the upconverter material to the metal, where it is dissipated as heat. In this study, a rate-equation model is applied to study the interplay between near-field enhancement and luminescence quenching for a range of different geometries. It is found that while shapes that incorporate pointy features and/or narrow gaps support stronger near-field enhancements, they also suffer more severely from luminescence quenching. Due to the strong con elation between the two effects, the predicted enhancement in UC luminescence is similar across all considered geometries ranging from 1 to 3. Our results indicate that the near-field of plasmonic MNPs might not be suitable for increasing UC efficiency.
更多
查看译文
关键词
plasmonics,upconversion,optical modeling
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要