Biomechanical Microenvironment Regulates Fusogenicity of Breast Cancer Cells

ACS Biomaterials Science & Engineering(2019)

引用 11|浏览9
暂无评分
摘要
Fusion of cancer cells is thought to contribute to tumor development and drug resistance. The low frequency of cell fusion events and the instability of fused cells have hindered our ability to understand the molecular mechanisms that govern cell fusion. We have demonstrated that several breast cancer cell lines can fuse into multinucleated giant cells in vitro, and the initiation and longevity of fused cells can be regulated solely by biophysical factors. Dynamically tuning the adhesive area of the patterned substrates, reducing cytoskeletal tensions pharmacologically, altering matrix stiffness, and modulating pattern curvature all supported the spontaneous fusion and stability of these multinucleated giant cells. These observations highlight that the biomechanical microenvironment of cancer cells, including the matrix rigidity and interfacial curvature, can directly modulate their fusogenicity, an unexplored mechanism through which biophysical cues regulate tumor progression.
更多
查看译文
关键词
breast cancer,cell fusion,micropattern,matrix stiffness,curvature,mechanotransduction
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要