Knowledge-based automated planning with three-dimensional generative adversarial networks

MEDICAL PHYSICS(2020)

引用 64|浏览17
暂无评分
摘要
Purpose To develop a knowledge-based automated planning pipeline that generates treatment plans without feature engineering, using deep neural network architectures for predicting three-dimensional (3D) dose. Methods Our knowledge-based automated planning (KBAP) pipeline consisted of a knowledge-based planning (KBP) method that predicts dose for a contoured computed tomography (CT) image followed by two optimization models that learn objective function weights and generate fluence-based plans, respectively. We developed a novel generative adversarial network (GAN)-based KBP approach, a 3D GAN model, which predicts dose for the full 3D CT image at once and accounts for correlations between adjacent CT slices. Baseline comparisons were made against two state-of-the-art deep learning-based KBP methods from the literature. We also developed an additional benchmark, a two-dimensional (2D) GAN model which predicts dose to each axial slice independently. For all models, we investigated the impact of multiplicatively scaling the predictions before optimization, such that the predicted dose distributions achieved all target clinical criteria. Each KBP model was trained on 130 previously delivered oropharyngeal treatment plans. Performance was tested on 87 out-of-sample previously delivered treatment plans. All KBAP plans were evaluated using clinical planning criteria and compared to their corresponding clinical plans. KBP prediction quality was assessed using dose-volume histogram (DVH) differences from the corresponding clinical plans. Results The best performing KBAP plans were generated using predictions from the 3D GAN model that were multiplicatively scaled. These plans satisfied 77% of all clinical criteria, compared to the clinical plans, which satisfied 67% of all criteria. In general, multiplicatively scaling predictions prior to optimization increased the fraction of clinical criteria satisfaction by 11% relative to the plans generated with nonscaled predictions. Additionally, these KBAP plans satisfied the same criteria as the clinical plans 84% and 8% more frequently as compared to the two benchmark methods, respectively. Conclusion We developed the first knowledge-based automated planning framework using a 3D generative adversarial network for prediction. Our results, based on 217 oropharyngeal cancer treatment plans, demonstrated superior performance in satisfying clinical criteria and generated more realistic plans as compared to the previous state-of-the-art approaches.
更多
查看译文
关键词
3D-dose prediction,artificial intelligence,automated planning,generative adversarial networks,knowledge-based planning,optimization
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要