Nonreciprocal Spin Pumping Damping In Asymmetric Magnetic Trilayers

PHYSICAL REVIEW B(2020)

引用 12|浏览80
暂无评分
摘要
In magnetic trilayer systems, spin pumping is generally addressed as a reciprocal mechanism characterized by one unique spin-mixing conductance common to both interfaces. However, this assumption is questionable in cases where different types of interfaces are present. Here, we present a general theory for analyzing spin pumping in cases with more than one unique interface and where the magnetic coupling is allowed to be noncollinear. The theory is applied to analyze layer-resolved ferromagnetic resonance experiments on the trilayer system Ni80Fe20/Ru/Fe49Co49V2 where the Ru spacer thickness is varied to tune the indirect exchange coupling. It is demonstrated that the equation of motion of macrospins driven by spin pumping need to be modified in case of noncollinear coupling. Our analysis also shows that the spin pumping in trilayer systems with dissimilar magnetic layers, in general, is nonreciprocal.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要