Structural And Electrical Characterization Of Thick Gan Layers On Si, Gan, And Engineered Substrates

JOURNAL OF APPLIED PHYSICS(2019)

引用 21|浏览22
暂无评分
摘要
A major challenge in gallium nitride (GaN) vertical power devices and other large bandgap materials is the high defect density that compromises the performance, reliability, and yield. Defects are typically nucleated at the heterointerface where there are both lattice and thermal mismatches. Here, we report the selective area growth (SAG) of thick GaN on Si and on the newly available Qromis Substrate Technology T (QST) substrates that lead to a significant reduction of the defect densities to a level that is nearly comparable to that on native substrates by defect annihilation. We performed a parametric study of the electrical properties of the SAG GaN layers by fabricating and characterizing Schottky barrier diodes for SAG GaN layer thicknesses of 5, 10, 15, and 20 mu m for GaN-on-Si, GaN-on-QST, and GaN-on-GaN diodes. While thicker layers led to a significant reduction in defect densities and improvement in the diode forward current characteristics, the GaN-on-QST diodes exhibited nearly similar characteristics to the GaN-on-GaN diodes. Further improvement in the device structure and/or SAG growth for GaN-on-Si is needed to achieve a comparable performance as the defect densities in the GaN-on-Si are comparable to that of GaN-on-QST substrates.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要