TDSNN:From Deep Neural Networks to Deep Spike Neural Networks with Temporal-­coding

THIRTY-THIRD AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE / THIRTY-FIRST INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE / NINTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE(2019)

引用 76|浏览158
暂无评分
摘要
Continuous-valued deep convolutional networks (DNNs) can be converted into accurate rate-coding based spike neural networks (SNNs). However, the substantial computational and energy costs, which is caused by multiple spikes, limit their use in mobile and embedded applications. And recent works have shown that the newly emerged temporal-coding based SNNs converted from DNNs can reduce the computational load effectively. In this paper, we propose a novel method to convert DNNs to temporal-coding SNNs, called TDSNN. Combined with the characteristic of the leaky integrate-and-fire (LIF) neural model, we put forward a new coding principle Reverse Coding and design a novel Ticking Neuron mechanism. According to our evaluation, our proposed method achieves 42% total operations reduction on average in large networks comparing with DNNs with no more than 0.5% accuracy loss. The evaluation shows that TDSNN may prove to be one of the key enablers to make the adoption of SNNs widespread.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要