Agonist binding affinity determines palmitoylation of the glucagon-like peptide-1 receptor and its functional interaction with plasma membrane nanodomains in pancreatic beta cells

bioRxiv(2018)

引用 1|浏览11
暂无评分
摘要
The glucagon-like peptide-1 receptor (GLP-1R), a key pharmacological target in type 2 diabetes and obesity, is known to undergo palmitoylation by covalent ligation of an acyl chain to cysteine 438 in its carboxyl-terminal tail. Work with other GPCRs indicates that palmitoylation can be dynamically regulated to allow receptors to partition into plasma membrane nanodomains that act as signaling hotspots. Here, we demonstrate that the palmitoylated state of the GLP-1R is increased by agonist binding, leading to its segregation and clustering into plasma membrane signaling nanodomains before undergoing internalization in a clathrin-dependent manner. Both GLP-1R signaling and trafficking are modulated by strategies targeting nanodomain segregation and cluster formation, including depletion of cholesterol or expression of a palmitoylation-defective GLP-1R mutant. Differences in receptor binding affinity exhibited by biased GLP-1R agonists, and modulation of binding kinetics with the positive allosteric modulator BETP, influence GLP-1R palmitoylation, clustering, nanodomain signaling, and internalization. Downstream effects on insulin secretion from pancreatic beta cells indicate that these processes are relevant to GLP-1R physiological actions and might be therapeutically targetable.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要