State-aware detection of sensory stimuli in the cortex of the awake mouse.

PLOS COMPUTATIONAL BIOLOGY(2019)

引用 20|浏览21
暂无评分
摘要
Cortical responses to sensory inputs vary across repeated presentations of identical stimuli, but how this trial-to-trial variability impacts detection of sensory inputs is not fully understood. Using multi-channel local field potential (LFP) recordings in primary somatosensory cortex (S1) of the awake mouse, we optimized a data-driven cortical state classifier to predict single-trial sensory-evoked responses, based on features of the spontaneous, ongoing LFP recorded across cortical layers. Our findings show that, by utilizing an ongoing prediction of the sensory response generated by this state classifier, an ideal observer improves overall detection accuracy and generates robust detection of sensory inputs across various states of ongoing cortical activity in the awake brain, which could have implications for variability in the performance of detection tasks across brain states.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要