Mutual synchronization of constriction-based spin Hall nano-oscillators in weak in-plane fields

arXiv: Applied Physics(2018)

引用 23|浏览35
暂无评分
摘要
We study mutual synchronization in double nanoconstriction-based spin Hall nano-oscillators (SHNOs) under weak in-plane fields ($mu_0H_mathrm{IP}$ = 30-40 mT) and also investigate its angular dependence. We compare SHNOs with different nano-constriction spacings of 300 and 900 nm. In all devices, mutual synchronization occurs below a certain critical angle, which is higher for the 300 nm spacing than for the 900 nm spacing, reflecting the stronger coupling at shorter distances. Alongside the synchronization, we observe a strong second harmonic consistent with predictions that the synchronization may be mediated by the propagation of second harmonic spin waves. However, although Brillouin Light Scattering microscopy confirms the synchronization, it fails to detect any related increase of the second harmonic. Micromagnetic simulations instead explain the angular dependent synchronization as predominantly due to magneto-dipolar coupling between neighboring SHNOs.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要