Impact of asymmetries on fuel performance in inertial confinement fusion

PHYSICAL REVIEW E(2018)

引用 19|浏览95
暂无评分
摘要
Low-mode asymmetries prevent effective compression, confinement, and heating of the fuel in inertial confinement fusion (ICF) implosions, and their control is essential to achieving ignition. Ion temperatures (T-ion) in ICF experiments are inferred from the broadening of primary neutron spectra. Directional motion (flow) of the fuel at burn also impacts broadening and will lead to artificially inflated "T-ion" values. Flow due to low-mode asymmetries is expected to give rise to line-of-sight variations in measured T-ion. We report on intentionally asymmetrically driven experiments at the OMEGA laser facility designed to test the ability to accurately predict and measure line-of-sight differences in apparent T-ion due to low-mode asymmetry-seeded flows. Contrasted to CHIMERA and xRAGE simulations, the measurements demonstrate how all asymmetry seeds have to be considered to fully capture the flow field in an implosion. In particular, flow induced by the stalk that holds the target is found to interfere with the seeded asymmetry. A substantial stalk-seeded asymmetry in the areal density of the implosion is also observed.
更多
查看译文
关键词
fusion,fuel performance
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要