Representation and evolution of urban weather boundary conditions in downtown Chicago

JOURNAL OF BUILDING PERFORMANCE SIMULATION(2020)

引用 10|浏览38
暂无评分
摘要
This study presents a novel computing technique for data exchange and coupling between a high-resolution weather simulation model and a building energy model, with a goal of evaluating the impact of urban weather boundary conditions on energy performance of urban buildings. The Weather Research and Forecasting (WRF) model is initialized with the operational High-Resolution Rapid Refresh (HRRR) dataset to provide hourly weather conditions over the Chicago region. We utilize the building footprint, land use, and building stock datasets to generate building energy models using EnergyPlus. We mapped the building exterior surfaces to local air nodes to import simulated microclimate data and to export buildings' heat emissions to their local environment. Preliminary experiments for a test area in Chicago show that predicted building cooling energy use differs by about 4.7% for the selected date when compared with simulations using TMY weather data and without considering the urban microclimate boundary conditions.
更多
查看译文
关键词
Urban climate modelling,energy modelling,coupling,WRF,EnergyPlus
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要