Surface and Tropospheric Water Vapor Variability and Decadal Trends at Two Supersites of CO-PDD (Cézeaux and Puy de Dôme) in Central France

ATMOSPHERE(2018)

引用 7|浏览33
暂无评分
摘要
We present an analysis of decadal in situ and remote sensing observations of water vapor over the Cezeaux and puy de Dome, located in central France (45 degrees N, 3 degrees E), in order to document the variability, cycles and trends of surface and tropospheric water vapor at different time scales and the geophysical processes responsible for the water vapor distributions. We use meteorological stations, GPS (Global Positioning System), and lidar datasets, supplemented with three remote sources of water vapor (COSMIC-radio-occultation, ERA-interim-ECMWF numerical model, and AIRS-satellite). The annual cycle of water vapor is clearly established for the two sites of different altitudes and for all types of measurement. Cezeaux and puy de Dome present almost no diurnal cycle, suggesting that the variability of surface water vapor at this site is more influenced by a sporadic meteorological system than by regular diurnal variations. The lidar dataset shows a greater monthly variability of the vertical distribution than the COSMIC and AIRS satellite products. The Cezeaux site presents a positive trend for the GPS water vapor total column (0.42 +/- 0.45 g.kg(-1)/decade during 2006-2017) and a significant negative trend for the surface water vapor mixing ratio (-0.16 +/- 0.09 mm/decade during 2002-2017). The multi-linear regression analysis shows that continental forcings (East Atlantic Pattern and East Atlantic-West Russia Pattern) have a greater influence than oceanic forcing (North Atlantic Oscillation) on the water vapor variations.
更多
查看译文
关键词
atmospheric water vapor,cycles and variability,climatology,decenal trends
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要