Nature’s conductors: what can microbial multi-heme cytochromes teach us about electron transport and biological energy conversion?

Current Opinion in Chemical Biology(2018)

引用 50|浏览4
暂无评分
摘要
Microorganisms can acquire energy from the environment by extending their electron transport chains to external solid electron donors or acceptors. This process, known as extracellular electron transfer (EET), is now being heavily pursued for wiring microbes to electrodes in bioelectrochemical renewable energy technologies. Recent studies highlight the crucial role of multi-heme cytochromes in facilitating biotic–abiotic EET both for cellular electron export and uptake. Here we explore progress in understanding the range and function of these biological electron conduits in the context of fuel-to-electricity and electricity-to-bioproduct conversion. We also highlight emerging topics, including the role of multi-heme cytochromes in inter-species electron transfer and in inspiring the design and synthesis of a new generation of protein-based bioelectronic components.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要