A continuation approach to nonlinear model predictive control of open channel systems

arXiv: Optimization and Control(2018)

引用 23|浏览2
暂无评分
摘要
The equations governing open channel flow are strongly nonlinear when considering the full range of possible flows. Hence, optimization problems that aim to select optimal flow regimes for hydraulic structures such as weirs and pumps are subject to nonlinear relations between optimization variables. Such optimization problems are nonconvex, and may admit multiple isolated local minima, rendering them problematic for use in operational model predictive control. This paper introduces the notions of zero-convexity and path stability, i.e., the property of a parametric optimization problem that I) is convex at the starting parameter value and II) that when computing a path of solutions as a function of the parameter, such a path exists and no bifurcations arise. Path stability ensures that the parametric optimization problem can be solved in a deterministic and numerically stable fashion. It is shown that a class of numerical optimal control problems subject to simplified 1D shallow water hydraulics is zero-convex and path stable, and hence suitable for deployment in decision support systems based on model predictive control.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要