Akt/PKB enhances non-canonical Wnt signals by compartmentalizing β-Catenin

bioRxiv(2017)

引用 2|浏览21
暂无评分
摘要
Cellular proliferation is antagonistically regulated by canonical and non-canonical Wnt signals; their dysbalance triggers cancers. It is widely believed that the PI3-K→ Akt pathway enhances canonical Wnt signals by affecting transcriptional activity and stability of β-catenin. Here we demonstrate that the PI3-K→Akt pathway also enhances non-canonical Wnt signals by compartmentalizing β-catenin. By phosphorylating the phosphoinositide(PI)-binding domain of a multimodular signal transducer, Daple, Akt abolishes Daple’s ability to bind PI3-P-enriched endosomes that engage dynein motor complex for long-distance trafficking of β-catenin/E-cadherin complexes to pericentriolar recycling endosomes (PCREs). Phosphorylation compartmentalizes Daple/β-catenin/E-cadherin complexes to cell-cell contact sites, enhances non-canonical Wnt signals, and thereby, suppresses colony growth. Dephosphorylation compartmentalizes β-catenin on PCREs, a specialized compartment for prolonged unopposed canonical Wnt signaling, and enhances colony growth. Cancer-associated Daple mutants that are insensitive to Akt mimic a constitutively dephosphorylated state. This work not only identifies Daple as a platform for crosstalk between Akt and the non-canonical Wnt pathway, but also reveals the impact of such crosstalk during cancer initiation and progression.
更多
查看译文
关键词
Daple,G protein,E-cadherin,&#x03B2,-catenin,pericentriolar recycling endosomes,dishevelled,PDZ domain,PDZ-binding motif,non-canonical Wnt,cancer invasion,guanine nucleotide exchange factor (GEF)
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要