Plasmon–exciton interaction and screening of exciton in ZnO-based thin film on bulk Pt as analyzed by spectroscopic ellipsometry

JAPANESE JOURNAL OF APPLIED PHYSICS(2017)

引用 15|浏览7
暂无评分
摘要
We study plasmon-exciton interaction in ZnO-based thin film on bulk Pt by using high resolution spectroscopic ellipsometry. ZnO films on quartz are used as reference. This study shows the strong electronic interactions between ZnO film and Pt by considering the significant suppression of exciton in ZnO film, in comparison to ZnO film on quartz. We found that plasmon in Pt are responsible to provide transferred electron for electronic blocking of exciton in ZnO film induce by spontaneous recombination from Pt. In the case of Cu doped ZnO film, we confirm screening effects on exciton and a localized interband transition for both systems (ZnO film on Pt and ZnO film on quartz). In Cu-doped ZnO film, electronic blocking of exciton by Pt plasmon is more pronounce rather than screening effect by interband transition. Our results show the importance of plasmon from substrate and doping to modify the optical properties of wide bandgap semiconductor. (C) 2017 The Japan Society of Applied Physics
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要