Determination of the rotational population of H2 and D2 including high-N states in low temperature plasmas via the Fulcher-α transition

Journal of Quantitative Spectroscopy and Radiative Transfer(2017)

引用 27|浏览0
暂无评分
摘要
Vibrational and rotational excitation of the hydrogen molecule can significantly affect molecular reaction rates in low pressure low temperature plasmas, for example for the creation of H−/D− ions via the dissociative attachment process. In general, the rotational population in these discharges is known to be non-thermal with an overpopulation of states with high rotational quantum number N. In contrast to a sophisticated direct measurement of the rotational distribution in the XΣg+1,v=0 state, it is demonstrated that the determination can also be carried out up to high-N levels rather easily via optical emission spectroscopy utilizing the Fulcher-α transition of H2 and D2. The measured rotational populations can be described with a two-temperature distribution where the cold part reflects the population according to the gas temperature of the discharge. This has been verified by using the emission of the second positive system of nitrogen as independent gas temperature diagnostic. The hot part where the rotational temperature reaches several thousand Kelvin arises most probably from recombinative desorption of hydrogen at the discharge vessel wall where parts of the binding energy are converted into rotational excitation. Neglecting the hot population – what is often done when using the Fulcher-α transition as gas temperature diagnostic – can lead to a strong overestimation of Tgas. No fundamental differences in the rotational distributions between hydrogen and deuterium have been found, only the hot rotational temperature is smaller for D2 indicating an isotope-dependency of the recombinative desorption process.
更多
查看译文
关键词
Rotational population,Diatomic molecules,Gas temperature determination,Molecular emission
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要