Effect of Multiple Cation Electrolyte Mixtures on Rechargeable Zn–MnO2 Alkaline Battery

CHEMISTRY OF MATERIALS(2016)

引用 121|浏览100
暂无评分
摘要
A Bi2O3 in beta-MnO2 composite cathode material has been synthesized using a simple hydrothermal method and cycled in a mixed KOH-LiOH electrolyte with a range of concentrations. We show that, at a KOH:LiOH molar ratio of 1:3, both proton insertion and lithium insertion occur, allowing access to a higher fraction of the theoretical capacity of the MnO2 while preventing the formation of ZnMn2O4. This enables a capacity of 360 mAh/g for over 60 cycles, with cycling limited more by anode properties than traditional cathodic failure mechanisms. The structural changes occurring during cycling are characterized using electron microscopy and in situ synchrotron energy-dispersive X-ray diffraction (EDXRD) techniques. This mixed electrolyte shows exceptional cyclability and capacity and can be used as a drop-in replacement for current alkaline batteries, potentially drastically improving their cycle life and creating a wide range of new applications for this energy storage technology.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要