Some Limiting Factors in Superintensive Production of Juvenile Pacific White Shrimp, Litopenaeus vannamei, in No‐water‐exchange, Biofloc‐dominated Systems

JOURNAL OF THE WORLD AQUACULTURE SOCIETY(2016)

引用 41|浏览14
暂无评分
摘要
Superintensive shrimp culture in zero-exchange, biofloc-dominated production systems is more biosecure and sustainable than traditional shrimp farming practices. However, successful application of this technology depends upon optimizing dietary formulations, controlling Vibrio outbreaks, and managing accumulative changes in water quality and composition. A 49-d study investigated the effect of two commercial feeds of differing protein content and an indoor limited-exchange, biofloc-dominated culture environment on Litopenaeus vannamei performance and tissue composition, water quality and ionic composition, and Vibrio dynamics. Juveniles (5.3g) were stocked at 457/m(3) into four 40m(3) shallow raceways containing biofloc-dominated water and fed one of two commercial feeds with differing protein content, 35 or 40%. Shrimp performance, Vibrio populations, and changes in shrimp and culture water composition were monitored. There were no significant differences (P>0.05) in shrimp performance (survival, weight, growth, specific growth rate, total biomass, yield, feed conversion ratio, and protein efficiency ratio) or proximate composition between feed types. The 40% protein feed resulted in higher culture water nitrate and phosphate concentrations, alkalinity consumption and bicarbonate use, and higher phytoplankton density. The presence of Vibrio, specifically Vibrio parahaemolyticus, reduced shrimp survival. This survival decrease corresponded with increased culture water Vibrio concentrations. Culture water K+ and Mg2+ increased significantly (P<0.05), and Sr2+, Br-, and Cl- decreased significantly (P<0.05) over time. While Cu2+ and Zn2+ did increase in shrimp tissue, no heavy metals accumulated to problematic levels in culture water or shrimp tissue. These results demonstrate the importance of monitoring Vibrio populations and ionic composition in limited-exchange shrimp culture systems.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要