Guiding biomolecular interactions in cells using de novo protein-protein interfaces.

ACS synthetic biology(2019)

引用 32|浏览31
暂无评分
摘要
An improved ability to direct and control biomolecular interactions in living cells would impact on synthetic biology. A key issue is the need to introduce interacting components that act orthogonally to endogenous proteomes and interactomes. Here we show that low-complexity, de novo designed protein-protein-interaction (PPI) domains can substitute for natural PPIs and guide engineered protein-DNA interactions in Escherichia coli. Specifically, we use de novo homo- and hetero-dimeric coiled coils to reconstitute a cytoplasmic split adenylate cyclase; to recruit RNA polymerase to a promoter and activate gene expression; and to oligomerize both natural and designed DNA-binding domains to repress transcription. Moreover, the stabilities of the heterodimeric coiled coils can be modulated by rational design and, thus, adjust the levels of gene activation and repression in vivo. These experiments demonstrate the possibilities for using designed proteins and interactions to control biomolecular systems such as enzyme cascades and circuits in cells.
更多
查看译文
关键词
alpha-helical coiled coil,de novo protein design,DNA-protein interaction,protein-protein interaction,TAL effectors,transcriptional control
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要