Scaling entity resolution: A loosely schema-aware approach

Information Systems(2019)

引用 27|浏览93
暂无评分
摘要
In big data sources, real-world entities are typically represented with a variety of schemata and formats (e.g., relational records, JSON objects, etc.). Different profiles (i.e., representations) of an entity often contain redundant and/or inconsistent information. Thus identifying which profiles refer to the same entity is a fundamental task (called Entity Resolution) to unleash the value of big data. The naïve all-pairs comparison solution is impractical on large data, hence blocking methods are employed to partition a profile collection into (possibly overlapping) blocks and limit the comparisons to profiles that appear in the same block together. Meta-blocking is the task of restructuring a block collection, removing superfluous comparisons. Existing meta-blocking approaches rely exclusively on schema-agnostic features, under the assumption that handling the schema variety of big data does not pay-off for such a task. In this paper, we demonstrate how “loose” schema information (i.e., statistics collected directly from the data) can be exploited to enhance the quality of the blocks in a holistic loosely schema-aware (meta-)blocking approach that can be used to speed up your favorite Entity Resolution algorithm. We call it Blast (Blocking with Loosely-Aware Schema Techniques). We show how Blast can automatically extract the loose schema information by adopting an LSH-based step for efficiently handling volume and schema heterogeneity of the data. Furthermore, we introduce a novel meta-blocking algorithm that can be employed to efficiently execute Blast on MapReduce-like systems (such as Apache Spark). Finally, we experimentally demonstrate, on real-world datasets, how Blast outperforms the state-of-the-art (meta-)blocking approaches.
更多
查看译文
关键词
00-01,99-00
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要