Measurement of the relative non-degenerate two-photon absorption cross-section for fluorescence microscopy.

OPTICS EXPRESS(2019)

引用 8|浏览64
暂无评分
摘要
In non-degenerate two-photon microscopy (ND-TPM), the required energy for fluorescence excitation occurs via absorption of two photons of different energies derived from two synchronized pulsed laser beams. ND-TPM is a promising imaging technology offering flexibility in the choice of the photon energy for each beam. However, a formalism to quantify the efficiency of two-photon absorption (TPA) under non-degenerate excitation, relative to the resonant degenerate excitation, is missing. Here, we derive this formalism and experimentally validate our prediction for a common fluorophore, fluorescein. An accurate quantification of non-degenerate TPA is important to optimize the choice of photon energies for each fluorophore. (C) 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要