Optimal Haptic Communications Over Nanonetworks for E-Health Systems

IEEE Transactions on Industrial Informatics(2019)

引用 38|浏览74
暂无评分
摘要
A Tactile Internet-based nanonetwork is an emerging field that promises a new range of e-health applications, in which human operators can efficiently operate and control devices at the nanoscale for remote-patient treatment. A haptic feedback is inevitable for establishing a link between the operator and unknown in-body environment. However, haptic communications over the terahertz band may incur significant path loss due to molecular absorption. In this paper, we propose an optimization framework for haptic communications over nanonetworks, in which in-body nanodevices transmit haptic information to an operator via the terahertz band. By considering the properties of the terahertz band, we employ Brownian motion to describe the mobility of the nanodevices and develop a time-variant terahertz channel model. Furthermore, based on the developed channel model, we construct a stochastic optimization problem for improving haptic communications under the constraints of system stability, energy consumption, and latency. To solve the formulated nonconvex stochastic problem, an improved time-varying particle swarm optimization algorithm is presented, which can deal with the constraints of the problem efficiently by reducing the convergence time significantly. The simulation results validate the theoretical analysis of the proposed system.
更多
查看译文
关键词
Haptic interfaces,Nanoscale devices,Internet,Optimization,Resource management,Stochastic processes,Energy harvesting
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要