Using Injury Cost Functions from a Predictive Single Compartment Model to Assess the Severity of Mechanical Ventilator Induced Lung Injuries.

JOURNAL OF APPLIED PHYSIOLOGY(2019)

引用 11|浏览13
暂无评分
摘要
Identifying safe ventilation patterns for patients with acute respiratory distress syndrome remains challenging because of the delicate balance between gas exchange and selection of ventilator settings to prevent further ventilator-induced lung injury (VILI). Accordingly, this work seeks to link ventilator settings to graded levels of VILI to identify injury cost functions that predict injury by using a computational model to process pressures and flows measured at the airway opening. Pressure-volume loops were acquired over the course of similar to 2 h of mechanical ventilation in four different groups of BALB/c mice. A cohort of these animals were subjected to an injurious bronchoalveolar lavage before ventilation. The data were analyzed with a single-compartment model that predicts recruitment/derecruitment and tissue distension at each time step in measured pressure-volume loops. We compared several injury cost functions to markers of VILI-induced blood-gas barrier disruption. Of the cost functions considered, we conclude that mechanical power dissipation and strain heterogeneity are the best at distinguishing between graded levels of injury and are good candidates for forecasting the development of VILI. NEW & NOTEWORTHY This work uses a predictive single-compartment model and injury cost functions to assess graded levels of mechanical ventilator-induced lung injury. The most promising measures include strain heterogeneity and mechanical power dissipation.
更多
查看译文
关键词
injury cost function,lung function,mechanical ventilation,ventilator-induced lung injury
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要