Tunable Thermal Energy Transport across Diamond Membranes and Diamond-Si Interfaces by Nanoscale Graphoepitaxy.

ACS applied materials & interfaces(2019)

引用 48|浏览97
暂无评分
摘要
The development of electronic devices, especially those that involve heterogeneous integration of materials, has led to increased challenges in addressing their thermal operational-temperature demands. The heat flow in these systems is significantly influenced or even dominated by thermal boundary resistance at interface between dissimilar materials. However, controlling and tuning heat transport across an interface and in the adjacent materials has so far drawn limited attention. In this work, we grow chemical-vapor-deposited (CVD) diamond on silicon substrates by graphoepitaxy and experimentally demonstrate tunable thermal transport across diamond membranes and diamond-silicon interfaces. We observed the highest diamond-silicon thermal boundary conductance (TBC) measured to date and increased diamond thermal conductivity due to strong grain texturing in the diamond near the interface. Additionally, non-equilibrium molecular-dynamics (NEMD) simulations and a Landauer approach are used to understand the diamond-silicon TBC. These findings pave the way for tuning or increasing thermal conductance in heterogeneously integrated electronics that involve polycrystalline materials and will impact applications including electronics thermal management and diamond growth.
更多
查看译文
关键词
tunable thermal transport,CVD diamond,thermal boundary conductance,nanoscale graphoepitaxy,grain texturing
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要