Blocking CCN2 reduces progression of sensorimotor declines and fibrosis in a rat model of chronic repetitive overuse.

JOURNAL OF ORTHOPAEDIC RESEARCH(2019)

引用 19|浏览26
暂无评分
摘要
Fibrosis may be a key factor in sensorimotor dysfunction in patients with chronic overuse-induced musculoskeletal disorders. Using a clinically relevant rodent model, in which performance of a high demand handle-pulling task induces tissue fibrosis and sensorimotor declines, we pharmacologically blocked cellular communication network factor 2 (CCN2; connective tissue growth factor) with the goal of reducing the progression of these changes. Young adult, female Sprague-Dawley rats were shaped to learn to pull at high force levels (10 min/day, 5 weeks), before performing a high repetition high force (HRHF) task for 3 weeks (2 h/day, 3 days/week). HRHF rats were untreated, or treated in task weeks 2 and 3 with a monoclonal antibody that blocks CCN2 (FG-3019), or a control immunoglobulin G (IgG). Control rats were untreated or received FG-3019, IgG, or vehicle (saline) injections. Mean task reach rate and grasp force were higher in 3-week HRHF + FG-3019 rats, compared with untreated HRHF rats. Grip strength declined while forepaw mechanical sensitivity increased in untreated HRHF rats, compared with controls; changes improved by FG-3019 treatment. The HRHF task increased collagen in multiple tissues (flexor digitorum muscles, nerves, and forepaw dermis), which was reduced with FG-3019 treatment. FG-3019 treatment also reduced HRHF-induced increases in CCN2 and transforming growth factor beta in muscles. In tendons, FG-3019 reduced HRHF-induced increases in CCN2, epitendon thickening, and cell proliferation. Our findings indicate that CCN2 is critical to the progression of chronic overuse-induced multi-tissue fibrosis and functional declines. FG-3019 treatment may be a novel therapeutic strategy for overuse-induced musculoskeletal disorders. (c) 2019 The Authors. Journal of Orthopaedic Research (R) published by Wiley Periodicals, Inc. on behalf of Orthopaedic Research Society. J Orthop Res 37:2004-2018, 2019
更多
查看译文
关键词
work-related musculoskeletal disorders (WMSDs),tendinopathy,nerve,muscle,tendon
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要