Status of the HOLMES Experiment to Directly Measure the Neutrino Mass

Journal of Low Temperature Physics(2018)

引用 8|浏览0
暂无评分
摘要
The assessment of neutrino absolute mass scale is still a crucial challenge in today particle physics and cosmology. Beta or electron capture spectrum end-point study is currently the only experimental method which can provide a model-independent measurement of the absolute scale of neutrino mass. HOLMES is an experiment funded by the European Research Council to directly measure the neutrino mass. HOLMES will perform a calorimetric measurement of the energy released in the electron capture decay of the artificial isotope ^163 Ho. In a calorimetric measurement, the energy released in the decay process is entirely contained into the detector, except for the fraction taken away by the neutrino. This approach eliminates both the issues related to the use of an external source and the systematic uncertainties arising from decays on excited final states. The most suitable detectors for this type of measurement are low-temperature thermal detectors, where all the energy released into an absorber is converted into a temperature increase that can be measured by a sensitive thermometer directly coupled with the absorber. This measurement was originally proposed by De Rujula and Lusignoli (Nucl Phys B 219:277, 1983 . https://doi.org/10.1016/0550-3213(83)90642-9 ), but only in the last decade the technological progress in detectors development has allowed to design a sensitive experiment. HOLMES plans to deploy a large array of low-temperature microcalorimeters with implanted ^163 Ho nuclei. In this contribution we outline the HOLMES project with its physics reach and technical challenges, along with its status and perspectives.
更多
查看译文
关键词
Neutrino mass measurement,Electron capture,Holmium,Transition edge sensors
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要