Artificially decreased dissolved oxygen increases the persistence of Trichomonas gallinae in water

International Journal for Parasitology: Parasites and Wildlife(2019)

引用 3|浏览6
暂无评分
摘要
Water containing organic material has been shown to increase the persistence of the avian pathogenic protozoa, Trichomonas gallinae. We hypothesized that the decrease in dissolved oxygen due to microbes in the organic material could increase persistence of the microaerophilic trichomonads. Using simulated birdbaths, we determined 1) the levels of dissolved oxygen in distilled water with various amounts of organic material, 2) the concentration of the oxygen-scavenging enzyme Oxyrase® needed to achieve the dissolved oxygen levels obtained in organic material contaminated water, and finally, 3) the persistence of two T. gallinae isolates in Oxyrase®-supplemented water. An average of 9.6% dissolved oxygen was obtained with the addition of 15 g organic material to 500 ml of distilled water, whereas organic material-free water had 86.2% dissolved oxygen. The addition of 0.5% and 1.0% (vol/vol) Oxyrase® to organic material-free water yielded dissolved oxygen of 18.6% and 6.9%, respectively. Using 0.5% and 1.0% concentrations of Oxyrase®, we evaluated the persistence of two trichomonad isolates by inoculating ∼1 million trichomonads into 500 ml distilled water in triplicate. At various time-points, 0.5 ml aliquots of trichomonad-inoculated water were obtained and placed into Hollander Fluid media, incubated at 37 °C, and read by light microscopy every other day for 5 days. In our 1% Oxyrase® treatments, the longest recorded persistence of broad-winged hawk 1 increased from the previously reported 4hrs to 30hrs and Cooper's hawk 4 from 16hrs to 30hrs. These results indicate that the mechanism for organic material-mediated trichomonad persistence is associated with decreased dissolved oxygen, further demonstrating the importance of keeping birdbaths free of organic debris to discourage trichomonad persistence.
更多
查看译文
关键词
Trichomonas gallinae,Persistence,Bird waterers,Dissolved oxygen,Avian diseases,Oxyrase®
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要