Very Large and Reversible Stark Shift Tuning of Single Emitters in Layered Hexagonal Boron Nitride.

PHYSICAL REVIEW APPLIED(2019)

引用 60|浏览1
暂无评分
摘要
Combining solid-state single-photon emitters (SPEs) with nanophotonic platforms is a key goal in integrated quantum photonics. In order to realize functionality in potentially scalable elements, suitable SPEs have to be bright, stable, and widely tunable at room temperature. In this work, we show that selected SPEs embedded in a few-layer hexagonal boron nitride (h-BN) meet these demands. In order to show the wide tunability of these SPEs we employ an atomic force microscope (AFM) with a conductive tip to apply an electrostatic field to individual h-BN emitters sandwiched between the tip and an indium-tin-oxide-coated glass slide. A very large and reversible Stark shift of (5.5 +/- 0.3) nm at a zero-field wavelength of 670 nm is induced by applying just 20 V, which exceeds the typical resonance linewidths of nanodielectric and even nanoplasmonic resonators. Our results help to further understand the physical origin of SPEs in h-BN as well as for practical quantum photonic applications where wide spectral tuning and on/off resonance switching are required.
更多
查看译文
关键词
boron,single emitters,stark-shift
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要