A generalized kinetic framework applied to whole-cell catalysis in biofilm flow reactors clarifies performance enhancements.

arXiv: Quantitative Methods(2019)

引用 0|浏览0
暂无评分
摘要
A common kinetic framework for studies of whole-cell catalysis is vital for understanding and optimizing bioflow reactors. In this work, we demonstrate the applicability of a flow-adapted version of Michaelis-Menten kinetics to a catalytic bacterial biofilm. A three-electrode microfluidic electrochemical flow cell measured increased turnover rates by as much as 50% from a Geobacter sulfurreducens biofilm as flow rate was varied. Based on parameters from the applied kinetic framework, flow-induced increases to turnover rate, catalytic efficiency and device reaction capacity could be linked to an increase in catalytic biomass. This study demonstrates that a standardized kinetic framework is critical for quantitative measurements of new living catalytic systems in flow cells and for benchmarking against well-studied catalytic systems such as enzymes.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要