Rapid screening mutations of first-line-drug-resistant genes in Mycobacterium tuberculosis strains by allele-specific real-time quantitative PCR.

PEERJ(2019)

引用 3|浏览14
暂无评分
摘要
Tuberculosis (TB) is a worldwide health, economic, and social burden, especially in developing countries. Drug-resistant TB is the most serious type of this burden. Thus, it is necessary to screen drug-resistant mutations by using a simple and rapid detection method. A total of 32 pairs of allele-specific PCR (AS-PCR) primers were designed to screen mutation and/or wild-type alleles of 16 variations in four first-line drug-resistant genes (katG, rpoB, rpsL, and embB) of TB strains. A pair of primers was designed to amplify 16S rRNA gene and to verify successful amplification. Subsequently, we tested the specificity and sensitivity of these AS-PCR primers. The optimized condition of these AS-PCR primers was first confirmed. All mutations could be screened in general AS-PCR, but only 13 of 16 variations were intuitively investigated by using real-time quantitative PCR (qPCR) and AS-PCR primers. The results of specificity assay suggested that the AS-PCR primers with mutation and/or wildtype alleles could successfully amplify the corresponding allele under optimized PCR conditions. The sensitivity of nine pairs of primers was 500 copy numbers, and the other seven pairs of primers could successfully amplify correct fragments with a template comprising 103 or 104 copy numbers template. An optimized AS-qPCR was established to screen drug-resistant mutations in TB strains with high specificity and sensitivity.
更多
查看译文
关键词
AS-qPCR,Drug-resistant mutations,Specificity and sensitivity,TB
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要