Prediction And Identification Of Recurrent Genomic Rearrangements That Generate Chimeric Chromosomes In Saccharomyces Cerevisiae

PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA(2019)

引用 1|浏览74
暂无评分
摘要
Genomes are dynamic structures. Different mechanisms participate in the generation of genomic rearrangements. One of them is nonallelic homologous recombination (NAHR). This rearrangement is generated by recombination between pairs of repeated sequences with high identity. We analyzed rearrangements mediated by repeated sequences located in different chromosomes. Such rearrangements generate chimeric chromosomes. Potential rearrangements were predicted by localizing interchromosomal identical repeated sequences along the nuclear genome of the Saccharomyces cerevisiae S288C strain. Rearrangements were identified by a PCR-based experimental strategy. PCR primers are located in the unique regions bordering each repeated region of interest. When the PCR is performed using forward primers from one chromosome and reverse primers from another chromosome, the break point of the chimeric chromosome structure is revealed. In all cases analyzed, the corresponding chimeric structures were found. Furthermore, the nucleotide sequence of chimeric structures was obtained, and the origin of the unique regions bordering the repeated sequence was located in the expected chromosomes, using the perfect-match genomic landscape strategy (PMGL). Several chimeric structures were searched in colonies derived from single cells. All of the structures were found in DNA isolated from each of the colonies. Our findings indicate that interchromosomal rearrangements that generate chimeric chromosomes are recurrent and occur, at a relatively high frequency, in cell populations of S. cerevisiae.
更多
查看译文
关键词
genomic rearrangements, chimeric chromosomes, reciprocal translocations, genome architecture, PMGL strategy
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要