The Effect of Kalman-Weighted Averaging and Artifact Rejection on Residual Noise During Auditory Brainstem Response Testing.

AMERICAN JOURNAL OF AUDIOLOGY(2019)

引用 2|浏览1
暂无评分
摘要
Purpose: Low residual noise (RN) levels are critically important when obtaining electrophysiological recordings of threshold auditory brainstem responses. In this study, we examine the effectiveness and efficiency of Kalman-weighted averaging (KWA) implemented on the Vivosonic Integrity System and artifact rejection (AR) implemented on the Intelligent Hearing Systems SmartEP system for obtaining low RN levels. Method: Sixteen adults participated. Electrophysiological measures were obtained using simultaneous recordings by the Vivosonic and Intelligent Hearing Systems for subjects in 2 relaxed conditions and 4 active motor conditions. Three averaging times were used for the relaxed states (1, 1.5, and 3 min) and for the active states (1.5, 3, and 6 min). Repeated-measures analyses of variance were used to examine RN levels as a function of noise reduction strategy (i.e., KWA, AR) and averaging time. Results: Lower RN levels were obtained using KWA than AR in both the relaxed and active motor states. Thus, KWA was more effective than was AR under the conditions examined in this study. Using KWA, approximately 3 min of averaging was needed in the relaxed condition to obtain an average RN level of 0.025 mu V. In contrast, in the active motor conditions, approximately 6 min of averaging was required using KWA. Mean RN levels of 0.025 mu V were not attained using AR. Conclusions: When patients are not physiologically quiet, low RN levels are more likely to be obtained and more efficiently obtained using KWA than AR. However, even when using KWA, in active motor states, 6 min of averaging or more may be required to obtain threshold responses. Averaging time needed and whether a low RN level can be attained will depend on the level of motor activity exhibited by the patient.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要