Single Mild Traumatic Brain Injury Deteriorates Progressive Interhemispheric Functional And Structural Connectivity

JOURNAL OF NEUROTRAUMA(2021)

引用 24|浏览2
暂无评分
摘要
The present study examined dynamic interhemispheric structural and functional connectivity in mild traumatic brain injury (mTBI) patients with longitudinal observations from early subacute to chronic stages within 1 year of injury. Forty-two mTBI patients and 42 matched healthy controls underwent clinical and neuropsychological evaluations, diffusion tensor imaging, and resting-state functional magnetic resonance imaging. All mTBI patients were initially evaluated within 14 d post-injury (T-1) and at 3 months (T-2) and 6-12 months (T-3) follow-ups. Separate transcallosal fiber tracts in the corpus callosum (CC) with respect to their specific interhemispheric cortical projections were derived with fiber tracking and voxel-mirrored homotopic connectivity analyses. With diffusion tensor imaging-based tractography, five vertical segments of the CC (I-V) were distinguished. Correlation analyses were performed to evaluate relationships between structural and functional imaging measures as well as imaging indices and neuropsychological measures. The loss of integrity in the CC demonstrated saliently persistent and time-dependent regional specificity after mTBI. The impairment spanned multiple segments from CC II at T-1 and CC I, II, VI, and V at T-2 to all subregions at T-3. Moreover, loss of interhemispheric structural connectivity through the CC corresponded well to regions presenting altered interhemispheric functional connectivity. Decreased functional connectivity in the dorsolateral prefrontal cortex thereafter contributed to poor executive function in mTBI patients. The current study provides further evidence that the CC is a sign to interhemispheric highways underpinning the widespread cerebral pathology typifying mTBI syndrome.
更多
查看译文
关键词
corpus callosum, longitudinal study, mild traumatic brain injury, neurodegenerative diseases, voxel-mirrored homotopic connectivity
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要