Homocysteine-induced inverse expression of tissue factor and DPP4 in endothelial cells is related to NADPH oxidase activity.

H I Korkmaz, N E Hahn,K M Jansen, Rjp Musters,J van Bezu,W N van Wieringen,Ppm van Zuijlen, Mmw Ulrich, Hwm Niessen,Paj Krijnen

PHYSIOLOGY INTERNATIONAL(2019)

引用 3|浏览6
暂无评分
摘要
We previously found that homocysteine (Hcy)-induced apoptosis in endothelial cells coincided with increased NADPH oxidase (NOX) activity. In addition, in ischemic endothelial cells present in the heart, we showed that loss of serine protease dipeptidyl peptidase IV (DPP4) expression was correlated with induction of tissue factor (TF) expression. Since Hcy can initiate thrombosis through the induction of TF expression, in this study, we evaluated whether the inverse relation of TF and DPP4 is also Hcy-dependent and whether NOX-mediated reactive oxygen species (ROS) is playing a role herein. Methods: Human umbilical vein endothelial cells (HUVECs) were incubated with 2.5 mM Hcy for 3 and 6 h. The effects of Hcy on DPP4 and TF expression and NOX2/p47(phox)-mediated nitrotyrosine (ROS) production were studied using digital-imaging microscopy. Results: In HUVECs, high levels of Hcy showed a significant increase of TF expression and a concomitant loss of DPP4 expression after 6 h. In addition, NOX subunits NOX2 and p47(phox) were also significantly increased after 6 h of Hcy incubation and coincided with nitrotyrosine (ROS) expression. Interestingly, inhibition of NOX-mediated nitrotyrosine (ROS) with the use of apocynin not only reduced these effects, but also counteracted the effects of Hcy on TF and DPP4 expression. Conclusion: These results indicate that the inverse relation of TF and DPP4 in endothelial cells is also Hcy-dependent and related to NOX activity.
更多
查看译文
关键词
homocysteine,tissue factor,DPP4,endothelial cells,NADPH oxidase
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要