Spontaneous photon-pair generation at the nanoscale

arxiv(2019)

引用 0|浏览50
暂无评分
摘要
Optical nanoantennas have shown a great capacity for efficient extraction of photons from the near to the far-field, enabling directional emission from nanoscale single-photon sources. However, their potential for the generation and extraction of multi-photon quantum states remains unexplored. Here we demonstrate experimentally the nanoscale generation of two-photon quantum states at telecommunication wavelengths based on spontaneous parametric down-conversion in an optical nanoantenna. The antenna is a crystalline AlGaAs nanocylinder, possessing Mie-type resonances at both the pump and the bi-photon wavelengths and when excited by a pump beam generates photonpairs with a rate of 35 Hz. Normalized to the pump energy stored by the nanoantenna, this rate corresponds to 1.4 GHz/Wm, being one order of magnitude higher than conventional on-chip or bulk photon-pair sources. Our experiments open the way for multiplexing several antennas for coherent generation of multi-photon quantum states with complex spatial-mode entanglement and applications in free-space quantum communications and sensing.
更多
查看译文
关键词
spontaneous photon pair generation,subwavelength resonators,spontaneous parametric down-conversion,quasinormal mode expansion,nonlinear multimode interaction,metasurfaces
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要