Nondestructive Assessment of Articular Cartilage Electromechanical Properties after Osteochondral Autologous and Allogeneic Transplantation in a Goat Model.

CARTILAGE(2020)

引用 1|浏览8
暂无评分
摘要
Objective To determine the applicability of a minimally invasive diagnostic device to evaluate the quality of articular cartilage following autologous (OAT) and allogeneic (OCA) osteochondral graft transplantation in goat model. Design OAT grafts were harvested from lateral femoral condyles (LFCs) and transplanted into osteochondral defects created in medial femoral condyles (MFCs) of contralateral knees. OCA grafts were transplanted into MFC condyles afterin vitrostorage. Autologous platelet-rich plasma (PRP) was administered intraarticularly after the surgery and at 1 and 2 months postoperatively. OAT and OCA grafts were evaluated macroscopically (Oswestry arthroscopy score [OAS]), electromechanically (quantitative parameter, QP), and histologically (O'Driscoll score, safranin O staining intensity) at 3 and 6 months after transplantation. Results were compared with preoperative graft evaluation. Results Transplanted cartilage deteriorated within 6 months in all groups. Cartilage quality was better retained in OAT group compared with a decline in OCA group. QP and OAS scores were comparable in OAT and OCA groups at 3 months, but superior in OAT group at 6 months, according to all the methods applied. PRP injections significantly improved QP and OAS score at 6 months compared with 3 months in OAT group. QP moderately correlated with OAS, O'Driscoll score, and safranin O staining intensity. Conclusions Grafts did not retain preoperative quality parameters at 6 months follow-up; however, OAT were superior to OCA grafts. PRP may have a beneficial effect on macroscopic and electromechanical properties of cartilage; however, histological improvement is yet to be proved. Electromechanical diagnostic device enables reliable assessment of transplanted cartilage.
更多
查看译文
关键词
osteochondral transplantation,autograft,allograft,cartilage electromechanical properties,platelet-rich plasma
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要