Abnormal microtubule dynamics disrupt nucleocytoplasmic transport in tau-mediated frontotemporal dementia

bioRxiv(2018)

引用 1|浏览26
暂无评分
摘要
The neuronal microtubule-associated protein tau (MAPT) is central to the pathogenesis of many dementias, including Alzheimer9s disease. Autosomal dominant mutations in MAPT cause inherited frontotemporal dementia (FTD), but the underlying pathogenic mechanisms are unclear. Using human stem cell models of FTD due to MAPT mutations, we find that tau becomes hyperphosphorylated and mislocalises to neuronal cell bodies and dendrites in cortical neurons, recapitulating a key early event in FTD. Mislocalised tau in the cell body leads to abnormal microtubule dynamics in FTD-MAPT neurons that grossly deform the nuclear membrane, resulting in defective nucleocytoplasmic transport. Neurons in the post-mortem human FTD-MAPT cortex have a high incidence of nuclear deformation, indicating that tau-mediated nuclear membrane dysfunction is an important pathogenic process in FTD. Defects in nucleocytoplasmic transport in FTD point to important commonalities in the pathogenic mechanisms of both tau-mediated dementias and ALS-FTD due to TDP-43 and C9orf72 mutations.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要